Skip to navigationSkip to content
Choose Region
Choose Country
March 24th 2020

Wait... Not All Artificial Turf is Made the Same?

The Guide to Buying Your First Artificial Turf Field

You’ve decided to convert your natural grass field to artificial turf? That’s great news! We applaud your decision to offer your program a surface that delivers consistent playability, safety and is environmentally friendly.

So, what’s next? How do you get started?

  • Fundraising: To move forward, you’ll need the necessary funds to launch your project. You can fundraising through a variety of avenues like your booster club, alumni, grants, advertising or partnerships. Did you know you can even finance your field? Learn more here.
  • Design your dream field: This guide can help you evaluate what type of field is right for you. Read below!
  • Find your FieldTurf Expert: We have a team of leading experts to guide you through the process. Find yours here.

Did you know that by using The SmartBuy Cooperative Purchasing Program the procurement process is simplified to a quick (4) steps rather than the traditional (13+)? Learn how easy it can be to buy your dream field here.

So, what type of field is right for you? Most would think all artificial turf is the same, “green-side up please”, but that’s the furthest from the truth. There are numerous manufacturers that each deliver a variety of different systems. Let’s start with the basics: fiber, infill and backing:

TIP: Take note of “KEY QUESTIONS” to ask throughout the guide.


Primarily made from polyethylene, the fibers act as the individual grass blades found in a natural grass field. These fibers are tufted “stitched” into a carpet or backing, resembling a shag-carpet. The carpet is rolled, delivered on-site and assembled to build the field.

The ideal fiber should showcase low skin friction, superior durability, high resilience, and temperature stability.

KEY QUESTION: Ask your supplier if they manufacture their own fiber and if they have test reports attesting to the fibers’ quality/durability.

Simple enough? But wait, there are several different types of fibers.

  • Monofilament: “Mono”, a prefix that means “one, only, single,” relates to one individual fiber blade. It’s the most grass-like as it’s designed to stand-up straight. These types of systems are visually appealing and deliver natural ball-to-surface characteristics (ball-roll, ball-bounce) making it a popular choice for sports like soccer, lacrosse and even football.
  • Slit-Film: These wider fibers are fibrillated to create a net or “honeycomb” which is designed to lie over and encapsulate the infill, while absorbing heavy use from kicks, drags, tackles and slides. These systems are designed to be tough and deliver optimal agility.
  • Hybrid: A combination of monofilament fibers and a slit-film fiber, hybrid systems are designed to provide fiber resilience while encapsulating the infill. They say it’s the best of both worlds. Due to the variety of fibers, these systems deliver a full lush look.

KEY QUESTION: Ask if the two fibers are tufted in the same stitch. This new method is preferred for long-term aesthetics. If they’re tufted separately, the slit-film fiber can lay over while the monofilament will stand straight creating a visual of unevenness and waving in the field.


If the fiber replicates the blades of grass, the infill acts as the…? You guessed it, the soil or dirt. Why is there a need for infill? Like in a natural grass system, you play in the soil and not on the grass. Infill is the cushioning layer of the turf system which absorbs impact on fall. More infill will lead to better shock absorption.

Infill plays a vital part in performance, safety and energy restitution. Selecting an infill system that is heavy and stable is critical in giving your athletes long-term and consistent safety. Extensive research and studies have proven that a minimum of 3 lbs. of sand + 3 lbs. of rubber, for a total of 6lbs. per square foot, is required to ensure that your field meets the safety threshold. Do your research.

The recipe is simple: More infill = Increased safety. There are three popular types of infill systems:

  • The three-layer: The system is built with a base-layer of sand, a middle-layer of sand and rubber and a top-layer of larger rubber. As the material properties of the rubber and sand in the middle layer interlock, the system offers added stability and energy restitution. Traditionally the heaviest system per square foot, the three-layer construction offers leading safety prevention. A proven system over the past 20 years, the three-layer system has proven experience.
  • The two-layer: This homogeneous infill system consists of a base-layer of sand and a top-layer of rubber to provide the optimal firmness required for athletic performance while providing proper shock absorption. A proven system over the past 20 years, the two-layer system has proven experience.
  • The low infill: Built on a pad, these systems utilize a simple design, re-engineered with new age technology to offer an alternative surface solution constructed with thatch and either little rubber or completely rubber-free. This option can be the right choice for a variety of facilities depending on needs.

When building your field, you have all the power. Ask your field designer to specify infill levels that are safe and with a composition of materials that are heavy.

Here are the guidelines to follow to build a safe field:

  1. Demand infill weights from every turf company.
  2. Establish your infill weight minimums and have them written in the specifications. Make sure it’s at least 6 lbs of infill per square foot.
  3. Don’t just list volume or weight ratios – you don’t want companies cutting corners. Make sure the actual weight of sand and rubber is specified.

KEY QUESTION: Ask for independent safety research to validate the system safety. Do your research, trust the science and don’t sacrifice on safety. *

infill Options

When selecting your infill material, there is a multitude of options and categories, all with their own distinct benefits and drawbacks.

The standard choice of infill material is styrene-butadiene rubber (SBR), which is primarily obtained through recycling the rubber in car tires. Two types of SBR rubber are created through unique processes:

  • Cryogenic SBR Rubber: The premier option of the two solution, cryogenic SBR rubber is first grinded through a mill and then the smooth particles are separated from the rougher particles. Once separated, the rubber is frozen to a temperature of below -80 degrees Celsius (-112 degrees Fahrenheit) creating a glass-like material which is processed again, this time through a specialized mill which cuts the frozen rubber into small, smooth and rounded particles. Cryogenic SBR rubber offers numerous benefits. Due to its round shape, the infill facilitates a consistent flow of water through the system limiting the risk of infill migration caused by air bubbles in the system. Cryogenic SBR rubber connects effectively well with silica sand to deliver premier energy restitution back to the athlete.

  • Ambient SBR Rubber: During the grinding phase ambient rubber is simply processed through a high-powered rubber mill. The result are granules that may be inconsistent in shape, with some appearing more jagged than others. Both cryogenic and ambient SBR rubber offer customers with a quality system that has been tested, proven and installed on thousands of installations across the world.

Alternative & Natural Infill Options

There is a wide array of infills for programs interested in alternative solutions to styrene-butadiene rubber (SBR). Before exploring options, it’s essential to review the key questions to ask when researching “alternative solutions”:

  • Does the infill require additional irrigation?
  • Does the system require the installation of an underlayment “shock pad”?
  • Does the infill require additional maintenance?
  • What's the lead time for the delivery of the material?
  • What's the increased cost vs styrene-butadiene rubber (SBR)?

Let’s explore alternative solutions:

Natural Infills: These systems are produced using natural or organic materials, often helping divert waste from landfills. All natural infills will require the installation of an underlayment “shock pad” under the system to provide the proper shock absorption. Natural infills can be made from granulated olive cores, coconut peat, cork, and more.

Post-Industrial Recycled Rubber: The systems are produced using reclaimed post-industrial materials from various sources to create an alternative solution to SBR. A popular option is shoe grind material, created using excess/waste materials from leading show manufacturers. These infills will deliver similar performance, safety, and durability characteristics to traditional styrene-butadiene rubber infill.

TPE - Thermoplastic Elastomer: TPE is made from a class of copolymers or a physical mix of polymers and will also deliver similar performance, safety, and durability characteristics to traditional styrene-butadiene rubber infill. Selecting a high-quality TPE can come at an expense but is crucial to ensure it can withstand rigorous mechanical wear and weathering.

Backing and Drainage

Why is the choice of backing so important? As the rows of fibers are tufted in the backing, they need to be coated to secure them in place. Your choice of coating application can lead to improved drainage results.

There exists two types of coating / backing systems:

  • Perforated Backing: The coating is applied across the entire backing and then holes are punched to let water out drain through when it rains. The thousands of hole allow for quick drainage.
  • Finger-Unit Backing: The coating is only applied on the rows where fibers are tufted, leaving the rest of the backing completely porous for drainage. This method allows for ultra-quick drainage.

Depending on your budget, the region that you’re in, and the use that you’re aiming to get out of your field, it may be worthwhile to invest in a superior drainage system. The right drainage system will ensure that your field can be used at all times – allowing you to maximize on your investment. You don’t want to convert from a natural grass field that doesn’t drain to a turf field that doesn’t drain.

The recipe is simple: Better drainage = More field use

Remember, when you’re building your field, you’re in control. Set the proper minimums to ensure every supplier adheres to your guidelines. Plan for long-term durability and don’t sacrifice on safety.

Find your FieldTurf expert here.

Get Started